Secondary multiplication in Tate cohomology of generalized quaternion groups
Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 27-47.

Voir la notice de l'article provenant de la source International Press of Boston

Let $k$ be a field, and let $G$ be a finite group. By a theorem of D. Benson, H. Krause, and S. Schwede, there is a canonical element in the Hochschild cohomology of the Tate cohomology $\gamma_G\in H\! H^{3,-1} \hat{H}^*(G)$ with the following property: Given any graded $\hat{H}^*(G)$-module $X$, the image of $\gamma_G$ in $\mathrm{Ext}^{3,-1}_{\hat{H}^*(G)} (X,X)$ is zero if and only if $X$ is isomorphic to a direct summand of $\smash{\hat{H}^*(G,M)}$ for some $kG$-module $M$. In particular, if $\gamma_G=0$ then every module is a direct summand of a realizable $\hat{H}^*(G)$-module. We prove that the converse of that last statement is not true by studying in detail the case of generalized quaternion groups. Suppose that $k$ is a field of characteristic $2$ and $G$ is generalized quaternion of order $2^n$ with $n\geq 3$. We show that $\gamma_G$ is non-trivial for all $n$, but there is an $\hat{H}^*(G)$-module detecting this non-triviality if and only if $n=3$.
DOI : 10.4310/HHA.2014.v16.n1.a2
Classification : 20J06, 55S35
Keywords: Tate cohomology, higher multiplication
@article{HHA_2014_16_1_a1,
     author = {Martin Langer},
     title = {Secondary multiplication in {Tate} cohomology of generalized quaternion groups},
     journal = {Homology, homotopy, and applications},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a2/}
}
TY  - JOUR
AU  - Martin Langer
TI  - Secondary multiplication in Tate cohomology of generalized quaternion groups
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 27
EP  - 47
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a2/
DO  - 10.4310/HHA.2014.v16.n1.a2
LA  - en
ID  - HHA_2014_16_1_a1
ER  - 
%0 Journal Article
%A Martin Langer
%T Secondary multiplication in Tate cohomology of generalized quaternion groups
%J Homology, homotopy, and applications
%D 2014
%P 27-47
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a2/
%R 10.4310/HHA.2014.v16.n1.a2
%G en
%F HHA_2014_16_1_a1
Martin Langer. Secondary multiplication in Tate cohomology of generalized quaternion groups. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 27-47. doi : 10.4310/HHA.2014.v16.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a2/

Cité par Sources :