On connective $K$-theory of elementary abelian $2$-groups and local duality
Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 215-243.

Voir la notice de l'article provenant de la source International Press of Boston

The connective $ku$-(co)homology of elementary abelian $2$-groups is determined as a functor of the elementary abelian $2$-group, using the action of the Milnor operations $Q_0, Q_1$ on mod $2$ group cohomology, the Atiyah-Segal theorem for $KU$-cohomology, together with an analysis of the functorial structure of the integral group ring; the functorial structure then reduces calculations to the rank 1 case. These results are used to analyse the local cohomology spectral sequence calculating $ku$-homology, via a functorial version of local duality for Koszul complexes, giving a conceptual explanation of results of Bruner and Greenlees.
DOI : 10.4310/HHA.2014.v16.n1.a13
Classification : 19L41, 20J06
Keywords: connective $K$-theory, elementary abelian group, group cohomology, group homology, local cohomology
@article{HHA_2014_16_1_a12,
     author = {Geoffrey M. L. Powell},
     title = {On connective $K$-theory of elementary abelian $2$-groups and local duality},
     journal = {Homology, homotopy, and applications},
     pages = {215--243},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/}
}
TY  - JOUR
AU  - Geoffrey M. L. Powell
TI  - On connective $K$-theory of elementary abelian $2$-groups and local duality
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 215
EP  - 243
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/
DO  - 10.4310/HHA.2014.v16.n1.a13
LA  - en
ID  - HHA_2014_16_1_a12
ER  - 
%0 Journal Article
%A Geoffrey M. L. Powell
%T On connective $K$-theory of elementary abelian $2$-groups and local duality
%J Homology, homotopy, and applications
%D 2014
%P 215-243
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/
%R 10.4310/HHA.2014.v16.n1.a13
%G en
%F HHA_2014_16_1_a12
Geoffrey M. L. Powell. On connective $K$-theory of elementary abelian $2$-groups and local duality. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 215-243. doi : 10.4310/HHA.2014.v16.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/

Cité par Sources :