Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2014_16_1_a12, author = {Geoffrey M. L. Powell}, title = {On connective $K$-theory of elementary abelian $2$-groups and local duality}, journal = {Homology, homotopy, and applications}, pages = {215--243}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2014}, doi = {10.4310/HHA.2014.v16.n1.a13}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/} }
TY - JOUR AU - Geoffrey M. L. Powell TI - On connective $K$-theory of elementary abelian $2$-groups and local duality JO - Homology, homotopy, and applications PY - 2014 SP - 215 EP - 243 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/ DO - 10.4310/HHA.2014.v16.n1.a13 LA - en ID - HHA_2014_16_1_a12 ER -
%0 Journal Article %A Geoffrey M. L. Powell %T On connective $K$-theory of elementary abelian $2$-groups and local duality %J Homology, homotopy, and applications %D 2014 %P 215-243 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/ %R 10.4310/HHA.2014.v16.n1.a13 %G en %F HHA_2014_16_1_a12
Geoffrey M. L. Powell. On connective $K$-theory of elementary abelian $2$-groups and local duality. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 215-243. doi : 10.4310/HHA.2014.v16.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a13/
Cité par Sources :