Kei modules and unoriented link invariants
Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 167-177.

Voir la notice de l'article provenant de la source International Press of Boston

We define invariants of unoriented knots and links by enhancing the integral kei counting invariant $\Phi_X^{\mathbb{Z}}(K)$ for a finite kei $X$ using representations of the kei algebra, $\mathbb{Z}_K[X]$, a quotient of the quandle algebra $\mathbb{Z}[X]$ defined by Andruskiewitsch and Graña. We give an example that demonstrates that the enhanced invariant is stronger than the unenhanced kei counting invariant. As an application, we use a quandle module over the Takasaki kei on $\mathbb{Z}_3$ which is not a $\mathbb{Z}_K[X]$-module to detect the non-invertibility of a virtual knot.
DOI : 10.4310/HHA.2014.v16.n1.a10
Classification : 57M25, 57M27
Keywords: Kei algebra, kei module, involutory quandle, enhancement of counting invariants
@article{HHA_2014_16_1_a9,
     author = {Michael Grier and Sam Nelson},
     title = {Kei modules and unoriented link invariants},
     journal = {Homology, homotopy, and applications},
     pages = {167--177},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.4310/HHA.2014.v16.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a10/}
}
TY  - JOUR
AU  - Michael Grier
AU  - Sam Nelson
TI  - Kei modules and unoriented link invariants
JO  - Homology, homotopy, and applications
PY  - 2014
SP  - 167
EP  - 177
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a10/
DO  - 10.4310/HHA.2014.v16.n1.a10
LA  - en
ID  - HHA_2014_16_1_a9
ER  - 
%0 Journal Article
%A Michael Grier
%A Sam Nelson
%T Kei modules and unoriented link invariants
%J Homology, homotopy, and applications
%D 2014
%P 167-177
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a10/
%R 10.4310/HHA.2014.v16.n1.a10
%G en
%F HHA_2014_16_1_a9
Michael Grier; Sam Nelson. Kei modules and unoriented link invariants. Homology, homotopy, and applications, Tome 16 (2014) no. 1, pp. 167-177. doi : 10.4310/HHA.2014.v16.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2014.v16.n1.a10/

Cité par Sources :