Simplicial polytope complexes and deloopings of $K$-theory
Homology, homotopy, and applications, Tome 15 (2013) no. 2, pp. 301-330.

Voir la notice de l'article provenant de la source International Press of Boston

This paper is a continuation of the author’s previous paper on scissors congruence, in which we defined the notion of a polytope complex and its $K$-theory. In this paper we produce formulas for the delooping of a simplicial polytope complex and the cofiber of a morphism of simplicial polytope complexes. Along the way we also prove that the (classical and higher) scissors congruence groups of polytopes in a homogeneous $n$-manifold (with sufficient geometric data) are determined by its local properties.
DOI : 10.4310/HHA.2013.v15.n2.a18
Classification : 13D15, 18D05, 18F25, 19D99
Keywords: Waldhausen $K$-theory, scissors congruence
@article{HHA_2013_15_2_a17,
     author = {Inna Zakharevich},
     title = {Simplicial polytope complexes and deloopings of $K$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {301--330},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n2.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a18/}
}
TY  - JOUR
AU  - Inna Zakharevich
TI  - Simplicial polytope complexes and deloopings of $K$-theory
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 301
EP  - 330
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a18/
DO  - 10.4310/HHA.2013.v15.n2.a18
LA  - en
ID  - HHA_2013_15_2_a17
ER  - 
%0 Journal Article
%A Inna Zakharevich
%T Simplicial polytope complexes and deloopings of $K$-theory
%J Homology, homotopy, and applications
%D 2013
%P 301-330
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a18/
%R 10.4310/HHA.2013.v15.n2.a18
%G en
%F HHA_2013_15_2_a17
Inna Zakharevich. Simplicial polytope complexes and deloopings of $K$-theory. Homology, homotopy, and applications, Tome 15 (2013) no. 2, pp. 301-330. doi : 10.4310/HHA.2013.v15.n2.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a18/

Cité par Sources :