The geometric realization of monomial ideal rings and a theorem of Trevisan
Homology, homotopy, and applications, Tome 15 (2013) no. 2, pp. 1-7.

Voir la notice de l'article provenant de la source International Press of Boston

A direct proof is presented of a form of Alvise Trevisan’s theorem that every monomial ideal ring is represented by the cohomology of a topological space. Certain of these rings are shown to be realized by polyhedral products indexed by simplicial complexes.
DOI : 10.4310/HHA.2013.v15.n2.a1
Classification : 13F55, 55T20, 57T35
Keywords: monomial ideal ring, Stanley-Reisner ring, Davis-Januszkiewicz space, polar-ization, polyhedral product
@article{HHA_2013_15_2_a0,
     author = {A. Bahri and M. Bendersky and F. R. Cohen and S. Gitler},
     title = {The geometric realization of monomial ideal rings and a theorem of {Trevisan}},
     journal = {Homology, homotopy, and applications},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n2.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a1/}
}
TY  - JOUR
AU  - A. Bahri
AU  - M. Bendersky
AU  - F. R. Cohen
AU  - S. Gitler
TI  - The geometric realization of monomial ideal rings and a theorem of Trevisan
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 1
EP  - 7
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a1/
DO  - 10.4310/HHA.2013.v15.n2.a1
LA  - en
ID  - HHA_2013_15_2_a0
ER  - 
%0 Journal Article
%A A. Bahri
%A M. Bendersky
%A F. R. Cohen
%A S. Gitler
%T The geometric realization of monomial ideal rings and a theorem of Trevisan
%J Homology, homotopy, and applications
%D 2013
%P 1-7
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a1/
%R 10.4310/HHA.2013.v15.n2.a1
%G en
%F HHA_2013_15_2_a0
A. Bahri; M. Bendersky; F. R. Cohen; S. Gitler. The geometric realization of monomial ideal rings and a theorem of Trevisan. Homology, homotopy, and applications, Tome 15 (2013) no. 2, pp. 1-7. doi : 10.4310/HHA.2013.v15.n2.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n2.a1/

Cité par Sources :