Homotopy type of space of maps into a $K(G,n)$
Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 137-149.

Voir la notice de l'article provenant de la source International Press of Boston

Let $X$ be a connected CW complex and let $K(G,n)$ be an Eilenberg-Mac Lane CW complex where $G$ is abelian. As $K(G,n)$ may be taken to be an abelian monoid, the weak homotopy type of the space of continuous functions $X \to K(G,n)$ depends only upon the homology groups of $X$. The purpose of this note is to prove that this is true for the actual homotopy type. Precisely, the space $\mathrm{map}_* \big(X, K(G,n)\big)$ of pointed continuous maps $X \to K(G,n)$ is shown to be homotopy equivalent to the Cartesian product\[ \prod_{i \leq n} \mathrm{map}_* \big(M_i, K(G,n)\big). \]Here, $M_i$ is a Moore complex of type $M\big(H_i(X), i\big)$. The spaces of functions are equipped with the compact open topology.
DOI : 10.4310/HHA.2013.v15.n1.a8
Classification : 54C35, 55P15, 55P20
Keywords: function space, homotopy type, Eilenberg-Mac Lane space, abelian monoid
@article{HHA_2013_15_1_a8,
     author = {Jaka Smrekar},
     title = {Homotopy type of space of maps into a $K(G,n)$},
     journal = {Homology, homotopy, and applications},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a8/}
}
TY  - JOUR
AU  - Jaka Smrekar
TI  - Homotopy type of space of maps into a $K(G,n)$
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 137
EP  - 149
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a8/
DO  - 10.4310/HHA.2013.v15.n1.a8
LA  - en
ID  - HHA_2013_15_1_a8
ER  - 
%0 Journal Article
%A Jaka Smrekar
%T Homotopy type of space of maps into a $K(G,n)$
%J Homology, homotopy, and applications
%D 2013
%P 137-149
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a8/
%R 10.4310/HHA.2013.v15.n1.a8
%G en
%F HHA_2013_15_1_a8
Jaka Smrekar. Homotopy type of space of maps into a $K(G,n)$. Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 137-149. doi : 10.4310/HHA.2013.v15.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a8/

Cité par Sources :