Étale homotopy types and bisimplicial hypercovers
Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 27-49.

Voir la notice de l'article provenant de la source International Press of Boston

Suppose $(C, x)$ is a pointed locally connected small Grothendieck site, and let $(X, z)$ denote any connected locally fibrant simplicial sheaf $X$ equipped with a “geometric” point $z$. Following Artin-Mazur, an étale homotopy type of $X$ may then be defined via the geometrically pointed hypercovers of $X$ to yield a pro-object of the homotopy category, but this is not the only possible definition. In Étale homotopy of simplicial schemes, Friedlander defined another étale homotopy type of a simplicial scheme $X$ by taking diagonals of geometrically pointed bisimplicial hypercovers. In this paper, these two types are shown to be pro-isomorphic by means of a direct comparison of the associated cocycle categories. Friedlander’s construction of étale homotopy types as actual pro-simplicial sets relies on a rigidity property of the étale topology that may not always be available for arbitrary sites; the cocycle methods employed here do not have this limitation. By consequence, the associated homotopy types constructed from hypercovers and bisimplicial hypercovers are shown to be pro-isomorphic on any locally connected small Grothendieck site, and the comparison at the level of cocycles shows, in particular, that both abelian and non-abelian sheaf cohomology may be computed via bisimplicial hypercovers on arbitrary small Grothendieck sites.
DOI : 10.4310/HHA.2013.v15.n1.a2
Classification : 14F35, 18G30
Keywords: étale, homotopy, simplicial, sheaf
@article{HHA_2013_15_1_a2,
     author = {Michael D. Misamore},
     title = {\'Etale homotopy types and bisimplicial hypercovers},
     journal = {Homology, homotopy, and applications},
     pages = {27--49},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a2/}
}
TY  - JOUR
AU  - Michael D. Misamore
TI  - Étale homotopy types and bisimplicial hypercovers
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 27
EP  - 49
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a2/
DO  - 10.4310/HHA.2013.v15.n1.a2
LA  - en
ID  - HHA_2013_15_1_a2
ER  - 
%0 Journal Article
%A Michael D. Misamore
%T Étale homotopy types and bisimplicial hypercovers
%J Homology, homotopy, and applications
%D 2013
%P 27-49
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a2/
%R 10.4310/HHA.2013.v15.n1.a2
%G en
%F HHA_2013_15_1_a2
Michael D. Misamore. Étale homotopy types and bisimplicial hypercovers. Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 27-49. doi : 10.4310/HHA.2013.v15.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a2/

Cité par Sources :