Power operations in orbifold Tate $K$-theory
Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 313-342.

Voir la notice de l'article provenant de la source International Press of Boston

We formulate the axioms of an orbifold theory with power operations. We define orbifold Tate $K$-theory, by adjusting Devoto’s definition of the equivariant theory, and proceed to construct its power operations. We calculate the resulting symmetric powers, exterior powers and Hecke operators and put our work into context with orbifold loop spaces, level structures on the Tate curve and generalized Moonshine.
DOI : 10.4310/HHA.2013.v15.n1.a16
Classification : 19Lxx
Keywords: elliptic cohomology, Tate curve, cohomology operation, level structure, generalized moonshine
@article{HHA_2013_15_1_a16,
     author = {Nora Ganter},
     title = {Power operations in orbifold {Tate} $K$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {313--342},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a16/}
}
TY  - JOUR
AU  - Nora Ganter
TI  - Power operations in orbifold Tate $K$-theory
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 313
EP  - 342
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a16/
DO  - 10.4310/HHA.2013.v15.n1.a16
LA  - en
ID  - HHA_2013_15_1_a16
ER  - 
%0 Journal Article
%A Nora Ganter
%T Power operations in orbifold Tate $K$-theory
%J Homology, homotopy, and applications
%D 2013
%P 313-342
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a16/
%R 10.4310/HHA.2013.v15.n1.a16
%G en
%F HHA_2013_15_1_a16
Nora Ganter. Power operations in orbifold Tate $K$-theory. Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 313-342. doi : 10.4310/HHA.2013.v15.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a16/

Cité par Sources :