On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspensions of Dold manifolds
Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 223-233.

Voir la notice de l'article provenant de la source International Press of Boston

A space $X$ is called $W$-trivial if for every vector bundle $ξ$ over $X$, the total Stiefel-Whitney class $W(ξ) = 1$. In this article we shall investigate whether the suspensions $Σ^k D(m,n)$ of Dold manifolds are $W$-trivial or not.
DOI : 10.4310/HHA.2013.v15.n1.a11
Classification : 55R40, 57R20, 57R22
Keywords: Stiefel-Whitney class, Dold manifold, suspension, $K$-theory
@article{HHA_2013_15_1_a11,
     author = {Ajay Singh Thakur},
     title = {On trivialities of {Stiefel-Whitney} classes of vector bundles over iterated suspensions of {Dold} manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {223--233},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a11/}
}
TY  - JOUR
AU  - Ajay Singh Thakur
TI  - On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspensions of Dold manifolds
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 223
EP  - 233
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a11/
DO  - 10.4310/HHA.2013.v15.n1.a11
LA  - en
ID  - HHA_2013_15_1_a11
ER  - 
%0 Journal Article
%A Ajay Singh Thakur
%T On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspensions of Dold manifolds
%J Homology, homotopy, and applications
%D 2013
%P 223-233
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a11/
%R 10.4310/HHA.2013.v15.n1.a11
%G en
%F HHA_2013_15_1_a11
Ajay Singh Thakur. On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspensions of Dold manifolds. Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 223-233. doi : 10.4310/HHA.2013.v15.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a11/

Cité par Sources :