Integral excision for $K$-theory
Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 1-25.

Voir la notice de l'article provenant de la source International Press of Boston

If $A$ is a homotopy cartesian square of ring spectra satisfying connectivity hypotheses, then the cube induced by Goodwillie’s integral cyclotomic trace $K(A) → TC(A)$ is homotopy cartesian. In other words, the homotopy fiber of the cyclotomic trace satisfies excision. The method of proof gives as a spin-off new proofs of some old results, as well as some new results, about periodic cyclic homology, and—more relevantly for our current application—the T-Tate spectrum of topological Hochschild homology, where T is the circle group.
DOI : 10.4310/HHA.2013.v15.n1.a1
Classification : 13D15, 14A20, 19D55, 55P43
Keywords: excision in algebraic $K$-theory, derived algebraic geometry, ring spectrum, cyclotomic trace
@article{HHA_2013_15_1_a1,
     author = {Bj{\o}rn Ian Dundas and Harald {\O}yen Kittang},
     title = {Integral excision for $K$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {1--25},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2013},
     doi = {10.4310/HHA.2013.v15.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a1/}
}
TY  - JOUR
AU  - Bjørn Ian Dundas
AU  - Harald Øyen Kittang
TI  - Integral excision for $K$-theory
JO  - Homology, homotopy, and applications
PY  - 2013
SP  - 1
EP  - 25
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a1/
DO  - 10.4310/HHA.2013.v15.n1.a1
LA  - en
ID  - HHA_2013_15_1_a1
ER  - 
%0 Journal Article
%A Bjørn Ian Dundas
%A Harald Øyen Kittang
%T Integral excision for $K$-theory
%J Homology, homotopy, and applications
%D 2013
%P 1-25
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a1/
%R 10.4310/HHA.2013.v15.n1.a1
%G en
%F HHA_2013_15_1_a1
Bjørn Ian Dundas; Harald Øyen Kittang. Integral excision for $K$-theory. Homology, homotopy, and applications, Tome 15 (2013) no. 1, pp. 1-25. doi : 10.4310/HHA.2013.v15.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2013.v15.n1.a1/

Cité par Sources :