Every binary self-dual code arises from Hilbert symbols
Homology, homotopy, and applications, Tome 14 (2012) no. 2, pp. 189-196.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper we construct binary self-dual codes using the étale cohomology of $\mu_2$ on the spectra of rings of $S$-integers of global fields. We will show that up to equivalence, all self-dual codes of length at least $4$ arise from Hilbert pairings on rings of $S$-integers of $\mathbb{Q}$. This is an arithmetic counterpart of a result of Kreck and Puppe, who used cobordism theory to show that all self-dual codes arise from Poincaré; duality on real three manifolds.
DOI : 10.4310/HHA.2012.v14.n2.a11
Classification : 11T71, 14F20, 14G50, 94B05
Keywords: binary self-dual code, $S$-integer, étale cohomology
@article{HHA_2012_14_2_a11,
     author = {Ted Chinburg and Ying Zhang},
     title = {Every binary self-dual code arises from {Hilbert} symbols},
     journal = {Homology, homotopy, and applications},
     pages = {189--196},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     doi = {10.4310/HHA.2012.v14.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n2.a11/}
}
TY  - JOUR
AU  - Ted Chinburg
AU  - Ying Zhang
TI  - Every binary self-dual code arises from Hilbert symbols
JO  - Homology, homotopy, and applications
PY  - 2012
SP  - 189
EP  - 196
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n2.a11/
DO  - 10.4310/HHA.2012.v14.n2.a11
LA  - en
ID  - HHA_2012_14_2_a11
ER  - 
%0 Journal Article
%A Ted Chinburg
%A Ying Zhang
%T Every binary self-dual code arises from Hilbert symbols
%J Homology, homotopy, and applications
%D 2012
%P 189-196
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n2.a11/
%R 10.4310/HHA.2012.v14.n2.a11
%G en
%F HHA_2012_14_2_a11
Ted Chinburg; Ying Zhang. Every binary self-dual code arises from Hilbert symbols. Homology, homotopy, and applications, Tome 14 (2012) no. 2, pp. 189-196. doi : 10.4310/HHA.2012.v14.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n2.a11/

Cité par Sources :