Scissors congruence as $K$-theory
Homology, homotopy, and applications, Tome 14 (2012) no. 1, pp. 181-202.

Voir la notice de l'article provenant de la source International Press of Boston

Scissors congruence groups have traditionally been expressed algebraically in terms of group homology. We give an alternate construction of these groups by producing them as the 0-level in the algebraic $K$-theory of a Waldhausen category.
DOI : 10.4310/HHA.2012.v14.n1.a9
Classification : 13D15, 18D05, 18F25, 19Dxx
Keywords: scissors congruence, K-theory, Waldhausen category
@article{HHA_2012_14_1_a9,
     author = {Inna Zakharevich},
     title = {Scissors congruence as $K$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {181--202},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     doi = {10.4310/HHA.2012.v14.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a9/}
}
TY  - JOUR
AU  - Inna Zakharevich
TI  - Scissors congruence as $K$-theory
JO  - Homology, homotopy, and applications
PY  - 2012
SP  - 181
EP  - 202
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a9/
DO  - 10.4310/HHA.2012.v14.n1.a9
LA  - en
ID  - HHA_2012_14_1_a9
ER  - 
%0 Journal Article
%A Inna Zakharevich
%T Scissors congruence as $K$-theory
%J Homology, homotopy, and applications
%D 2012
%P 181-202
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a9/
%R 10.4310/HHA.2012.v14.n1.a9
%G en
%F HHA_2012_14_1_a9
Inna Zakharevich. Scissors congruence as $K$-theory. Homology, homotopy, and applications, Tome 14 (2012) no. 1, pp. 181-202. doi : 10.4310/HHA.2012.v14.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a9/

Cité par Sources :