Cubical approach to derived functors
Homology, homotopy, and applications, Tome 14 (2012) no. 1, pp. 133-158.

Voir la notice de l'article provenant de la source International Press of Boston

We construct a cubical analog of the Tierney-Vogel theory of simplicial derived functors and prove that these cubical derived functors are naturally isomorphic to their simplicial counterparts. We also show that this result generalizes the well-known fact that the simplicial and cubical singular homologies of a topological space are naturally isomorphic.
DOI : 10.4310/HHA.2012.v14.n1.a7
Classification : 18E25, 18G10, 18G25, 18G30, 55N10
Keywords: derived functor, normalized chain complex, presimplicial object, projective class, projective pseudocubical resolution, pseudocubical object
@article{HHA_2012_14_1_a7,
     author = {Irakli Patchkoria},
     title = {Cubical approach to derived functors},
     journal = {Homology, homotopy, and applications},
     pages = {133--158},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     doi = {10.4310/HHA.2012.v14.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a7/}
}
TY  - JOUR
AU  - Irakli Patchkoria
TI  - Cubical approach to derived functors
JO  - Homology, homotopy, and applications
PY  - 2012
SP  - 133
EP  - 158
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a7/
DO  - 10.4310/HHA.2012.v14.n1.a7
LA  - en
ID  - HHA_2012_14_1_a7
ER  - 
%0 Journal Article
%A Irakli Patchkoria
%T Cubical approach to derived functors
%J Homology, homotopy, and applications
%D 2012
%P 133-158
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a7/
%R 10.4310/HHA.2012.v14.n1.a7
%G en
%F HHA_2012_14_1_a7
Irakli Patchkoria. Cubical approach to derived functors. Homology, homotopy, and applications, Tome 14 (2012) no. 1, pp. 133-158. doi : 10.4310/HHA.2012.v14.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2012.v14.n1.a7/

Cité par Sources :