On the algebraic $K$-theory of the coordinate axes over the integers
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 103-111.

Voir la notice de l'article provenant de la source International Press of Boston

We show that the relative algebraic $K$-theory group $K_{2i}(\mathbb{Z}[x, y]/(xy), (x, y))$ is free abelian of rank 1 and that $K_{2i+1}(\mathbb{Z}[x, y]/(xy), (x, y))$ is finite of order $(i!)^2$. We also find the group structure of $K_{2i+1}(\mathbb{Z}[x, y]/(xy), (x, y))$ in low degrees.
DOI : 10.4310/HHA.2011.v13.n2.a7
Classification : 19D55, 55Q91
Keywords: algebraic $K$-theory, equivariant homotopy, topological cyclic homology
@article{HHA_2011_13_2_a7,
     author = {Vigleik Angeltveit and Teena Gerhardt},
     title = {On the algebraic $K$-theory of the coordinate axes over the integers},
     journal = {Homology, homotopy, and applications},
     pages = {103--111},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a7/}
}
TY  - JOUR
AU  - Vigleik Angeltveit
AU  - Teena Gerhardt
TI  - On the algebraic $K$-theory of the coordinate axes over the integers
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 103
EP  - 111
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a7/
DO  - 10.4310/HHA.2011.v13.n2.a7
LA  - en
ID  - HHA_2011_13_2_a7
ER  - 
%0 Journal Article
%A Vigleik Angeltveit
%A Teena Gerhardt
%T On the algebraic $K$-theory of the coordinate axes over the integers
%J Homology, homotopy, and applications
%D 2011
%P 103-111
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a7/
%R 10.4310/HHA.2011.v13.n2.a7
%G en
%F HHA_2011_13_2_a7
Vigleik Angeltveit; Teena Gerhardt. On the algebraic $K$-theory of the coordinate axes over the integers. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 103-111. doi : 10.4310/HHA.2011.v13.n2.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a7/

Cité par Sources :