Coarse geometry and P. A. Smith theory
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 73-102.

Voir la notice de l'article provenant de la source International Press of Boston

We define a generalization of the fixed point set, called the bounded fixed set, for a group acting by isometries on a metric space. An analogue of the P. A. Smith theorem is proved for finite p-group actions on metric spaces of finite asymptotic dimension, which relates the coarse homology of the bounded fixed set to the coarse homology of the total space.
DOI : 10.4310/HHA.2011.v13.n2.a6
Classification : 20F65, 55Nxx, 57S17
Keywords: coarse homology, Smith theory
@article{HHA_2011_13_2_a6,
     author = {Ian Hambleton and Lucian Savin},
     title = {Coarse geometry and {P.} {A.} {Smith} theory},
     journal = {Homology, homotopy, and applications},
     pages = {73--102},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a6/}
}
TY  - JOUR
AU  - Ian Hambleton
AU  - Lucian Savin
TI  - Coarse geometry and P. A. Smith theory
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 73
EP  - 102
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a6/
DO  - 10.4310/HHA.2011.v13.n2.a6
LA  - en
ID  - HHA_2011_13_2_a6
ER  - 
%0 Journal Article
%A Ian Hambleton
%A Lucian Savin
%T Coarse geometry and P. A. Smith theory
%J Homology, homotopy, and applications
%D 2011
%P 73-102
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a6/
%R 10.4310/HHA.2011.v13.n2.a6
%G en
%F HHA_2011_13_2_a6
Ian Hambleton; Lucian Savin. Coarse geometry and P. A. Smith theory. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 73-102. doi : 10.4310/HHA.2011.v13.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a6/

Cité par Sources :