On the $K$-theory and homotopy theory of the Klein bottle group
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 63-72.

Voir la notice de l'article provenant de la source International Press of Boston

We construct infinitely many chain homotopically distinct algebraic 2-complexes for the Klein bottle group and give various topological applications. We compare our examples to other examples in the literature and address the question of geometric realizability.
DOI : 10.4310/HHA.2011.v13.n2.a5
Classification : 18G35, 20C07, 57M05, 57M20
Keywords: 2-complex, algebraic 2-complex, chain complex, stably free module, relation module, geometric realization
@article{HHA_2011_13_2_a5,
     author = {Jens Harlander and Andrew Misseldine},
     title = {On the $K$-theory and homotopy theory of the {Klein} bottle group},
     journal = {Homology, homotopy, and applications},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a5/}
}
TY  - JOUR
AU  - Jens Harlander
AU  - Andrew Misseldine
TI  - On the $K$-theory and homotopy theory of the Klein bottle group
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 63
EP  - 72
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a5/
DO  - 10.4310/HHA.2011.v13.n2.a5
LA  - en
ID  - HHA_2011_13_2_a5
ER  - 
%0 Journal Article
%A Jens Harlander
%A Andrew Misseldine
%T On the $K$-theory and homotopy theory of the Klein bottle group
%J Homology, homotopy, and applications
%D 2011
%P 63-72
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a5/
%R 10.4310/HHA.2011.v13.n2.a5
%G en
%F HHA_2011_13_2_a5
Jens Harlander; Andrew Misseldine. On the $K$-theory and homotopy theory of the Klein bottle group. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 63-72. doi : 10.4310/HHA.2011.v13.n2.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a5/

Cité par Sources :