Rational homotopy models for two-point configuration spaces of lens spaces
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 43-62.

Voir la notice de l'article provenant de la source International Press of Boston

We study the algebraic topology of configuration spaces as interesting objects in their own right and with the goal of constructing invariants for topological manifolds. We calculate the complete Massey product structure for the universal cover of the space of two point configurations in a three-dimensional lens space. We then construct rational homotopy models for these spaces and calculate the rational homotopy groups.
DOI : 10.4310/HHA.2011.v13.n2.a4
Classification : 55P62, 55S30, 57N65, 57N75
Keywords: homology, homotopy, Massey product, lens space, configuration space
@article{HHA_2011_13_2_a4,
     author = {Matthew S. Miller},
     title = {Rational homotopy models for two-point configuration spaces of lens spaces},
     journal = {Homology, homotopy, and applications},
     pages = {43--62},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a4/}
}
TY  - JOUR
AU  - Matthew S. Miller
TI  - Rational homotopy models for two-point configuration spaces of lens spaces
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 43
EP  - 62
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a4/
DO  - 10.4310/HHA.2011.v13.n2.a4
LA  - en
ID  - HHA_2011_13_2_a4
ER  - 
%0 Journal Article
%A Matthew S. Miller
%T Rational homotopy models for two-point configuration spaces of lens spaces
%J Homology, homotopy, and applications
%D 2011
%P 43-62
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a4/
%R 10.4310/HHA.2011.v13.n2.a4
%G en
%F HHA_2011_13_2_a4
Matthew S. Miller. Rational homotopy models for two-point configuration spaces of lens spaces. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 43-62. doi : 10.4310/HHA.2011.v13.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a4/

Cité par Sources :