Lie coalgebras and rational homotopy theory, I: graph coalgebras
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 263-292.

Voir la notice de l'article provenant de la source International Press of Boston

We give a new presentation of the Lie cooperad as a quotient of the graph cooperad, a presentation which is not linearly dual to any of the standard presentations of the Lie operad. We use this presentation to explicitly compute duality between Lie algebras and coalgebras, to give a new presentation of Harrison homology, and to show that Lyndon words yield a canonical basis for cofree Lie coalgebras.
DOI : 10.4310/HHA.2011.v13.n2.a16
Classification : 16E40, 55P48, 55P62
Keywords: Lie coalgebras, rational homotopy theory, graph cohomology
@article{HHA_2011_13_2_a16,
     author = {Dev Sinha and Benjamin Walter},
     title = {Lie coalgebras and rational homotopy theory, {I:} graph coalgebras},
     journal = {Homology, homotopy, and applications},
     pages = {263--292},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a16/}
}
TY  - JOUR
AU  - Dev Sinha
AU  - Benjamin Walter
TI  - Lie coalgebras and rational homotopy theory, I: graph coalgebras
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 263
EP  - 292
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a16/
DO  - 10.4310/HHA.2011.v13.n2.a16
LA  - en
ID  - HHA_2011_13_2_a16
ER  - 
%0 Journal Article
%A Dev Sinha
%A Benjamin Walter
%T Lie coalgebras and rational homotopy theory, I: graph coalgebras
%J Homology, homotopy, and applications
%D 2011
%P 263-292
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a16/
%R 10.4310/HHA.2011.v13.n2.a16
%G en
%F HHA_2011_13_2_a16
Dev Sinha; Benjamin Walter. Lie coalgebras and rational homotopy theory, I: graph coalgebras. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 263-292. doi : 10.4310/HHA.2011.v13.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a16/

Cité par Sources :