Comparing operadic theories of $n$-category
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 217-249.

Voir la notice de l'article provenant de la source International Press of Boston

We give a framework for comparing on the one hand theories of $n$-categories that are weakly enriched operadically, and on the other hand $n$-categories given as algebras for a contractible globular operad. Examples of the former are the definition by Trimble and variants (Cheng-Gurski) and examples of the latter are the definition by Batanin and variants (Leinster). We first provide a generalisation of Trimble’s original theory that allows for the use of other parametrising operads in a very general way, via the notion of categories weakly enriched in V where the weakness is parametrised by a $\mathcal{V}$-operad $P$. We define weak $n$-categories by iterated weak enrichment using a series of parametrising operads $P_i$. We then show how to construct from such a theory an $n$-dimensional globular operad for each $n \geqslant 0$ whose algebras are precisely the weak $n$-categories, and we show that the resulting globular operad is contractible precisely when the operads $P_i$ are contractible. We then show how the globular operad associated with Trimble’s topological definition is related to the globular operad used by Batanin to define fundamental $n$-groupoids of spaces.
DOI : 10.4310/HHA.2011.v13.n2.a14
Classification : 18D05, 18D20, 18D50
Keywords: $n$-category, operad
@article{HHA_2011_13_2_a14,
     author = {Eugenia Cheng},
     title = {Comparing operadic theories of $n$-category},
     journal = {Homology, homotopy, and applications},
     pages = {217--249},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a14/}
}
TY  - JOUR
AU  - Eugenia Cheng
TI  - Comparing operadic theories of $n$-category
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 217
EP  - 249
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a14/
DO  - 10.4310/HHA.2011.v13.n2.a14
LA  - en
ID  - HHA_2011_13_2_a14
ER  - 
%0 Journal Article
%A Eugenia Cheng
%T Comparing operadic theories of $n$-category
%J Homology, homotopy, and applications
%D 2011
%P 217-249
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a14/
%R 10.4310/HHA.2011.v13.n2.a14
%G en
%F HHA_2011_13_2_a14
Eugenia Cheng. Comparing operadic theories of $n$-category. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 217-249. doi : 10.4310/HHA.2011.v13.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a14/

Cité par Sources :