Support varieties and representation type of self-injective algebras
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 197-215.

Voir la notice de l'article provenant de la source International Press of Boston

We use the theory of varieties for modules arising from Hochschild cohomology to give an alternative version of the wildness criterion of Bergh and Solberg: If a finite dimensional self-injective algebra has a module of complexity at least 3 and satisfies some finiteness assumptions on Hochschild cohomology, then the algebra is wild. We show directly how this is related to the analogous theory for Hopf algebras that we developed in “Support varieties and representation type of small quantum groups,” Internat. Math. Res. Notices 2010, no. 7, 1346–1362. We give applications to many different types of algebras: Hecke algebras, reduced universal enveloping algebras, small half-quantum groups, and Nichols (quantum symmetric) algebras.
DOI : 10.4310/HHA.2011.v13.n2.a13
Classification : 16D50, 16E40, 16G10, 16G60, 16L60, 16T05, 17B35, 17B37, 20C08
Keywords: support variety, Hochschild cohomology, complexity, representation type, wild, tame, block, self-injective algebra, Hecke algebra, reduced universal enveloping algebra, small half-quantum group, Nichols algebra, quantum symmetric algebra, Hopf algebra
@article{HHA_2011_13_2_a13,
     author = {J\"org Feldvoss and Sarah Witherspoon},
     title = {Support varieties and representation type of self-injective algebras},
     journal = {Homology, homotopy, and applications},
     pages = {197--215},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a13/}
}
TY  - JOUR
AU  - Jörg Feldvoss
AU  - Sarah Witherspoon
TI  - Support varieties and representation type of self-injective algebras
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 197
EP  - 215
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a13/
DO  - 10.4310/HHA.2011.v13.n2.a13
LA  - en
ID  - HHA_2011_13_2_a13
ER  - 
%0 Journal Article
%A Jörg Feldvoss
%A Sarah Witherspoon
%T Support varieties and representation type of self-injective algebras
%J Homology, homotopy, and applications
%D 2011
%P 197-215
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a13/
%R 10.4310/HHA.2011.v13.n2.a13
%G en
%F HHA_2011_13_2_a13
Jörg Feldvoss; Sarah Witherspoon. Support varieties and representation type of self-injective algebras. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 197-215. doi : 10.4310/HHA.2011.v13.n2.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a13/

Cité par Sources :