L-infinity maps and twistings
Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 175-195.

Voir la notice de l'article provenant de la source International Press of Boston

We give a construction of an $L_\infty$ map from any $L_\infty$ algebra into its truncated Chevalley-Eilenberg complex as well as its cyclic and $A_\infty$ analogues. This map fits with the inclusion into the full Chevalley-Eilenberg complex (or its respective analogues) to form a homotopy fiber sequence of $L_\infty$ algebras. Applications to deformation theory and graph homology are given. We employ the machinery of Maurer-Cartan functors in $L_\infty$ and $A_\infty$ algebras and associated twistings which should be of independent interest.
DOI : 10.4310/HHA.2011.v13.n2.a12
Classification : 16E45, 18D50, 57T30, 81T18
Keywords: differential graded Lie algebra, Maurer-Cartan element, $A_\infty$ algebra, graph homology, Morita equivalence
@article{HHA_2011_13_2_a12,
     author = {Joseph Chuang and Andrey Lazarev},
     title = {L-infinity maps and twistings},
     journal = {Homology, homotopy, and applications},
     pages = {175--195},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a12/}
}
TY  - JOUR
AU  - Joseph Chuang
AU  - Andrey Lazarev
TI  - L-infinity maps and twistings
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 175
EP  - 195
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a12/
DO  - 10.4310/HHA.2011.v13.n2.a12
LA  - en
ID  - HHA_2011_13_2_a12
ER  - 
%0 Journal Article
%A Joseph Chuang
%A Andrey Lazarev
%T L-infinity maps and twistings
%J Homology, homotopy, and applications
%D 2011
%P 175-195
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a12/
%R 10.4310/HHA.2011.v13.n2.a12
%G en
%F HHA_2011_13_2_a12
Joseph Chuang; Andrey Lazarev. L-infinity maps and twistings. Homology, homotopy, and applications, Tome 13 (2011) no. 2, pp. 175-195. doi : 10.4310/HHA.2011.v13.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n2.a12/

Cité par Sources :