Generalized Davis-Januszkiewicz spaces, multicomplexes and monomial rings
Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 205-221.

Voir la notice de l'article provenant de la source International Press of Boston

We show that every monomial ring can be realized topologically by a certain topological space. This space is called a generalized Davis-Januszkiewicz space and can be thought of as a colimit over a multicomplex, a combinatorial object generalizing a simplicial complex. Furthermore, we show that such a space is obtained as the homotopy fiber of a certain map with total space the classical Davis-Januszkiewicz space.
DOI : 10.4310/HHA.2011.v13.n1.a8
Classification : 13F55, 55Pxx, 55U05
Keywords: Davis-Januszkiewicz space, monomial ring, Stanley-Rainer ring, simplicial complex, polarization, homotopy fiber
@article{HHA_2011_13_1_a7,
     author = {Alvise J. Trevisan},
     title = {Generalized {Davis-Januszkiewicz} spaces, multicomplexes and monomial rings},
     journal = {Homology, homotopy, and applications},
     pages = {205--221},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a8/}
}
TY  - JOUR
AU  - Alvise J. Trevisan
TI  - Generalized Davis-Januszkiewicz spaces, multicomplexes and monomial rings
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 205
EP  - 221
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a8/
DO  - 10.4310/HHA.2011.v13.n1.a8
LA  - en
ID  - HHA_2011_13_1_a7
ER  - 
%0 Journal Article
%A Alvise J. Trevisan
%T Generalized Davis-Januszkiewicz spaces, multicomplexes and monomial rings
%J Homology, homotopy, and applications
%D 2011
%P 205-221
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a8/
%R 10.4310/HHA.2011.v13.n1.a8
%G en
%F HHA_2011_13_1_a7
Alvise J. Trevisan. Generalized Davis-Januszkiewicz spaces, multicomplexes and monomial rings. Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 205-221. doi : 10.4310/HHA.2011.v13.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a8/

Cité par Sources :