Colocalization functors in derived categories and torsion theories
Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 75-88.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R$ be a ring and let $\mathcal{A}$ be a hereditary torsion class of $R$-modules. The inclusion of the localizing subcategory generated by $\mathcal{A}$ into the derived category of $R$ has a right adjoint, denoted CellA. Recently, Benson has shown how to compute $\operatorname{Cell}_{\mathcal{A}}R$ when $R$ is a group ring of a finite group over a prime field and $\mathcal{A}$ is the hereditary torsion class generated by a simple module. We generalize Benson's construction to the case where $\mathcal{A}$ is any hereditary torsion class on $R$. It is shown that for every $R$-module $M$ there exists an injective $R$-module $E$ such that: $$H^n(\operatorname{Cell}_{\mathcal{A}}M)\cong \operatorname{Ext}^{n-1}_{\operatorname{End}_R(E)} (\operatorname{Hom}_R (M,E),E)\hbox{ for }n\ge 2. $$
DOI : 10.4310/HHA.2011.v13.n1.a4
Classification : 16E30, 16S90
Keywords: torsion theory, colocalization, localization
@article{HHA_2011_13_1_a3,
     author = {Shoham Shamir},
     title = {Colocalization functors in derived categories and torsion theories},
     journal = {Homology, homotopy, and applications},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a4/}
}
TY  - JOUR
AU  - Shoham Shamir
TI  - Colocalization functors in derived categories and torsion theories
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 75
EP  - 88
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a4/
DO  - 10.4310/HHA.2011.v13.n1.a4
LA  - en
ID  - HHA_2011_13_1_a3
ER  - 
%0 Journal Article
%A Shoham Shamir
%T Colocalization functors in derived categories and torsion theories
%J Homology, homotopy, and applications
%D 2011
%P 75-88
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a4/
%R 10.4310/HHA.2011.v13.n1.a4
%G en
%F HHA_2011_13_1_a3
Shoham Shamir. Colocalization functors in derived categories and torsion theories. Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 75-88. doi : 10.4310/HHA.2011.v13.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a4/

Cité par Sources :