Productive elements in group cohomology
Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 381-401.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a finite group and $k$ be a field of characteristic $p \gt 0$. A cohomology class $\zeta\in H^n (G,k)$ is called productive if it annihilates $\operatorname{Ext}^*_{kG}(L_\zeta,L_\zeta)$. We consider the chain complex $\mathbf{P}(\zeta)$ of projective $kG$-modules which has the homology of an $(n - 1)$-sphere and whose $k$-invariant is $\zeta$ under a certain polarization. We show that $\zeta$ is productive if and only if there is a chain map $\Delta : \mathbf{P}(\zeta)\to \mathbf{P}(\zeta)\otimes \mathbf{P}(\zeta)$ such that $(\operatorname{id} \otimes \epsilon) \Delta \simeq \operatorname{id}$ and $(\epsilon \otimes \operatorname{id}) \Delta \simeq \operatorname{id}$. Using the Postnikov decomposition of $\mathbf{P}(\zeta) \otimes \mathbf{P}(\zeta)$, we prove that there is a unique obstruction for constructing a chain map $\Delta$ satisfying these properties. Studying this obstruction more closely, we obtain theorems of Carlson and Langer on productive elements.
DOI : 10.4310/HHA.2011.v13.n1.a15
Classification : 20C20, 20J06, 57S17
Keywords: group cohomology, chain complex, diagonal approximation
@article{HHA_2011_13_1_a14,
     author = {Erg\"un Yal\c{c}in},
     title = {Productive elements in group cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {381--401},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2011},
     doi = {10.4310/HHA.2011.v13.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a15/}
}
TY  - JOUR
AU  - Ergün Yalçin
TI  - Productive elements in group cohomology
JO  - Homology, homotopy, and applications
PY  - 2011
SP  - 381
EP  - 401
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a15/
DO  - 10.4310/HHA.2011.v13.n1.a15
LA  - en
ID  - HHA_2011_13_1_a14
ER  - 
%0 Journal Article
%A Ergün Yalçin
%T Productive elements in group cohomology
%J Homology, homotopy, and applications
%D 2011
%P 381-401
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a15/
%R 10.4310/HHA.2011.v13.n1.a15
%G en
%F HHA_2011_13_1_a14
Ergün Yalçin. Productive elements in group cohomology. Homology, homotopy, and applications, Tome 13 (2011) no. 1, pp. 381-401. doi : 10.4310/HHA.2011.v13.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2011.v13.n1.a15/

Cité par Sources :