On the second cohomology group of a simplicial group
Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 167-210.

Voir la notice de l'article provenant de la source International Press of Boston

We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
DOI : 10.4310/HHA.2010.v12.n2.a6
Classification : 18D35, 18G30, 20J06, 55U10
Keywords: cohomology, simplicial groups, crossed modules
@article{HHA_2010_12_2_a6,
     author = {Sebastian Thomas},
     title = {On the second cohomology group of a simplicial group},
     journal = {Homology, homotopy, and applications},
     pages = {167--210},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a6/}
}
TY  - JOUR
AU  - Sebastian Thomas
TI  - On the second cohomology group of a simplicial group
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 167
EP  - 210
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a6/
DO  - 10.4310/HHA.2010.v12.n2.a6
LA  - en
ID  - HHA_2010_12_2_a6
ER  - 
%0 Journal Article
%A Sebastian Thomas
%T On the second cohomology group of a simplicial group
%J Homology, homotopy, and applications
%D 2010
%P 167-210
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a6/
%R 10.4310/HHA.2010.v12.n2.a6
%G en
%F HHA_2010_12_2_a6
Sebastian Thomas. On the second cohomology group of a simplicial group. Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 167-210. doi : 10.4310/HHA.2010.v12.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a6/

Cité par Sources :