The homotopy theory of strong homotopy algebras and bialgebras
Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 39-108.

Voir la notice de l'article provenant de la source International Press of Boston

Lada introduced strong homotopy algebras to describe the structures on a deformation retract of an algebra in topological spaces. However, there is no satisfactory general definition of a morphism of strong homotopy (s.h.) algebras. Given a monad ⊤ on a simplicial category $\mathcal{C}$, we instead show how s.h. ⊤-algebras over $\mathcal{C}$ naturally form a Segal space. Given a distributive monad-comonad pair (⊤, ⊥), the same is true for s.h. (⊤,⊥)-bialgebras over $\mathcal{C}$; in particular this yields the homotopy theory of s.h. sheaves of s.h. rings. There are similar statements for quasi-monads and quasi-comonads. We also show how the structures arising are related to derived connections on bundles.
DOI : 10.4310/HHA.2010.v12.n2.a3
Classification : 18C15, 18D20, 18G30, 55U40
Keywords: algebraic theories, simplicial categories, Segal spaces
@article{HHA_2010_12_2_a3,
     author = {J. P. Pridham},
     title = {The homotopy theory of strong homotopy algebras and bialgebras},
     journal = {Homology, homotopy, and applications},
     pages = {39--108},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a3/}
}
TY  - JOUR
AU  - J. P. Pridham
TI  - The homotopy theory of strong homotopy algebras and bialgebras
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 39
EP  - 108
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a3/
DO  - 10.4310/HHA.2010.v12.n2.a3
LA  - en
ID  - HHA_2010_12_2_a3
ER  - 
%0 Journal Article
%A J. P. Pridham
%T The homotopy theory of strong homotopy algebras and bialgebras
%J Homology, homotopy, and applications
%D 2010
%P 39-108
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a3/
%R 10.4310/HHA.2010.v12.n2.a3
%G en
%F HHA_2010_12_2_a3
J. P. Pridham. The homotopy theory of strong homotopy algebras and bialgebras. Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 39-108. doi : 10.4310/HHA.2010.v12.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a3/

Cité par Sources :