Torsion in finite H-spaces and the homotopy of the three-sphere
Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 25-37.

Voir la notice de l'article provenant de la source International Press of Boston

Let $X$ be a 2-connected $p$-local finite $H$-space with a single cell in dimension three. We give a simple cohomological criterion which distinguishes when the inclusion $i$: $S^3 →X$ has the property that the loop of its three-connected cover is null homotopic. In particular, such a null homotopy implies that $π_m(i)=0 for m ≥4$. Applications are made to Harper’s rank 2 finite $H$-space and simple, simply-connected, compact Lie groups.
DOI : 10.4310/HHA.2010.v12.n2.a2
Classification : 55P45, 55Q52
Keywords: $H$-space, Harper’s space, torsion Lie group, three sphere
@article{HHA_2010_12_2_a2,
     author = {Piotr Beben and Stephen Theriault},
     title = {Torsion in finite {H-spaces} and the homotopy of the three-sphere},
     journal = {Homology, homotopy, and applications},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a2/}
}
TY  - JOUR
AU  - Piotr Beben
AU  - Stephen Theriault
TI  - Torsion in finite H-spaces and the homotopy of the three-sphere
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 25
EP  - 37
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a2/
DO  - 10.4310/HHA.2010.v12.n2.a2
LA  - en
ID  - HHA_2010_12_2_a2
ER  - 
%0 Journal Article
%A Piotr Beben
%A Stephen Theriault
%T Torsion in finite H-spaces and the homotopy of the three-sphere
%J Homology, homotopy, and applications
%D 2010
%P 25-37
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a2/
%R 10.4310/HHA.2010.v12.n2.a2
%G en
%F HHA_2010_12_2_a2
Piotr Beben; Stephen Theriault. Torsion in finite H-spaces and the homotopy of the three-sphere. Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 25-37. doi : 10.4310/HHA.2010.v12.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a2/

Cité par Sources :