The rational homotopy type of the space of self-equivalences of a fibration
Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 371-400.

Voir la notice de l'article provenant de la source International Press of Boston

Let $\mathrm{Aut}(p)$ denote the space of all self-fibre-homotopy equivalences of a fibration $p \colon E \to B$. When $E$ and $B$ are simply connected CW complexes with $E$ finite, we identify the rational Samelson Lie algebra of this monoid by means of an isomorphism: \[ \pi_*(\mathrm{Aut}(p)) \otimes \mathbb{Q} \cong H_*(\mathrm{Der}_{\land V}(\land V\otimes \land W)). \] Here $\land V\to \land V \otimes \land W$ is the Koszul-Sullivan model of the fibration and $\mathrm{Der}_{\land V}(\land V\otimes \land W)$ is the DG Lie algebra of derivations vanishing on $\land V$. We obtain related identifications of the rationalized homotopy groups of fibrewise mapping spaces and of the rationalization of the nilpotent group $\pi_0(\mathrm{Aut}_\sharp(p))$, where $\mathrm{Aut}_\sharp(p)$ is a fibrewise adaptation of the submonoid of maps inducing the identity on homotopy groups.
DOI : 10.4310/HHA.2010.v12.n2.a13
Classification : 55P62, 55Q15
Keywords: fibre-homotopy equivalence, Samelson Lie algebra, function space, Sullivan minimal model, derivation
@article{HHA_2010_12_2_a13,
     author = {Yves F\'elix and Gregory Lupton and Samuel B. Smith},
     title = {The rational homotopy type of the space of self-equivalences of a fibration},
     journal = {Homology, homotopy, and applications},
     pages = {371--400},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n2.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a13/}
}
TY  - JOUR
AU  - Yves Félix
AU  - Gregory Lupton
AU  - Samuel B. Smith
TI  - The rational homotopy type of the space of self-equivalences of a fibration
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 371
EP  - 400
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a13/
DO  - 10.4310/HHA.2010.v12.n2.a13
LA  - en
ID  - HHA_2010_12_2_a13
ER  - 
%0 Journal Article
%A Yves Félix
%A Gregory Lupton
%A Samuel B. Smith
%T The rational homotopy type of the space of self-equivalences of a fibration
%J Homology, homotopy, and applications
%D 2010
%P 371-400
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a13/
%R 10.4310/HHA.2010.v12.n2.a13
%G en
%F HHA_2010_12_2_a13
Yves Félix; Gregory Lupton; Samuel B. Smith. The rational homotopy type of the space of self-equivalences of a fibration. Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 371-400. doi : 10.4310/HHA.2010.v12.n2.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a13/

Cité par Sources :