Generalized Steenrod homology theories are strong shape invariant
Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 1-23.

Voir la notice de l'article provenant de la source International Press of Boston

It is shown that a reduced homology theory on the category of pointed compact metric spaces is strong shape invariant if and only if its homology functors $h_n$ satisfy the quotient exactness axiom, which means that for each pointed compact metric pair $(X, A, a_0)$ the natural sequence $h_n(A, a_0) \to h_n(X, a_0) \to h_n(X/A, *)$ is exact. As a consequence, all generalized Steenrod homology theories are strong shape invariant.
DOI : 10.4310/HHA.2010.v12.n2.a1
Classification : 55N20, 55N40, 55P55
Keywords: Steenrod homology theory, pointed strong shape theory, strong excision axiom, cone collapsing axiom, quotient exactness axiom
@article{HHA_2010_12_2_a1,
     author = {Peter Mrozik},
     title = {Generalized {Steenrod} homology theories are strong shape invariant},
     journal = {Homology, homotopy, and applications},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n2.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a1/}
}
TY  - JOUR
AU  - Peter Mrozik
TI  - Generalized Steenrod homology theories are strong shape invariant
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 1
EP  - 23
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a1/
DO  - 10.4310/HHA.2010.v12.n2.a1
LA  - en
ID  - HHA_2010_12_2_a1
ER  - 
%0 Journal Article
%A Peter Mrozik
%T Generalized Steenrod homology theories are strong shape invariant
%J Homology, homotopy, and applications
%D 2010
%P 1-23
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a1/
%R 10.4310/HHA.2010.v12.n2.a1
%G en
%F HHA_2010_12_2_a1
Peter Mrozik. Generalized Steenrod homology theories are strong shape invariant. Homology, homotopy, and applications, Tome 12 (2010) no. 2, pp. 1-23. doi : 10.4310/HHA.2010.v12.n2.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n2.a1/

Cité par Sources :