The $RO(G)$-graded Serre spectral sequence
Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 75-92.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper the Serre spectral sequence of Moerdijk and Svensson is extended from Bredon cohomology to $RO(G)$-graded cohomology for finite groups $G$. Special attention is paid to the case $G=\mathbb{Z}/2$ where the spectral sequence is used to compute the cohomology of certain projective bundles and loop spaces.
DOI : 10.4310/HHA.2010.v12.n1.a7
Classification : 55N25, 55N91, 55T10
Keywords: spectral sequence, algebraic topology, local coefficient, equivariant homology and cohomology
@article{HHA_2010_12_1_a7,
     author = {William C. Kronholm},
     title = {The $RO(G)$-graded {Serre} spectral sequence},
     journal = {Homology, homotopy, and applications},
     pages = {75--92},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a7/}
}
TY  - JOUR
AU  - William C. Kronholm
TI  - The $RO(G)$-graded Serre spectral sequence
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 75
EP  - 92
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a7/
DO  - 10.4310/HHA.2010.v12.n1.a7
LA  - en
ID  - HHA_2010_12_1_a7
ER  - 
%0 Journal Article
%A William C. Kronholm
%T The $RO(G)$-graded Serre spectral sequence
%J Homology, homotopy, and applications
%D 2010
%P 75-92
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a7/
%R 10.4310/HHA.2010.v12.n1.a7
%G en
%F HHA_2010_12_1_a7
William C. Kronholm. The $RO(G)$-graded Serre spectral sequence. Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 75-92. doi : 10.4310/HHA.2010.v12.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a7/

Cité par Sources :