La cohomologie totale est un foncteur dérivé
Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 367-400.

Voir la notice de l'article provenant de la source International Press of Boston

We use a certain sheaf of associative rings to define a global Ext functor. We prove that the “cohomologie totale” which we defined in an earlier paper in an analytic way is given by this global Ext. We use this functorial definition to prove some results conjectured in earlier papers. We introduce the “anchor spectral sequence” and use it to give a precise description of the total cohomology for the special case of complex homogeneous spaces.
DOI : 10.4310/HHA.2010.v12.n1.a19
Classification : 17B66, 32M05, 32M25
Keywords: Lie algebra of vector fields, complex vector fields, complex Lie groups, groups of automorphisms acting on complex spaces
@article{HHA_2010_12_1_a19,
     author = {Fran\c{c}ois Lescure},
     title = {La cohomologie totale est un foncteur d\'eriv\'e},
     journal = {Homology, homotopy, and applications},
     pages = {367--400},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n1.a19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a19/}
}
TY  - JOUR
AU  - François Lescure
TI  - La cohomologie totale est un foncteur dérivé
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 367
EP  - 400
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a19/
DO  - 10.4310/HHA.2010.v12.n1.a19
LA  - en
ID  - HHA_2010_12_1_a19
ER  - 
%0 Journal Article
%A François Lescure
%T La cohomologie totale est un foncteur dérivé
%J Homology, homotopy, and applications
%D 2010
%P 367-400
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a19/
%R 10.4310/HHA.2010.v12.n1.a19
%G en
%F HHA_2010_12_1_a19
François Lescure. La cohomologie totale est un foncteur dérivé. Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 367-400. doi : 10.4310/HHA.2010.v12.n1.a19. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a19/

Cité par Sources :