On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces
Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 357-366.

Voir la notice de l'article provenant de la source International Press of Boston

A space $B$ is described as W-trivial if for every vector bundle over $B$, all the Stiefel-Whitney classes vanish. We prove that if $B$ is a 9-fold suspension, then $B$ is W-trivial. We also determine all pairs $(k, n)$ of positive integers for which $Σ_kFP_n$ is W-trivial, where $F = \mathbb{R}, \mathbb{C} or \mathbb{H}$.
DOI : 10.4310/HHA.2010.v12.n1.a18
Classification : 55R50, 55S05
Keywords: Stiefel-Whitney class, vector bundle, squaring operation
@article{HHA_2010_12_1_a18,
     author = {Ryuichi Tanaka},
     title = {On trivialities of {Stiefel-Whitney} classes of vector bundles over iterated suspension spaces},
     journal = {Homology, homotopy, and applications},
     pages = {357--366},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a18/}
}
TY  - JOUR
AU  - Ryuichi Tanaka
TI  - On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 357
EP  - 366
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a18/
DO  - 10.4310/HHA.2010.v12.n1.a18
LA  - en
ID  - HHA_2010_12_1_a18
ER  - 
%0 Journal Article
%A Ryuichi Tanaka
%T On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces
%J Homology, homotopy, and applications
%D 2010
%P 357-366
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a18/
%R 10.4310/HHA.2010.v12.n1.a18
%G en
%F HHA_2010_12_1_a18
Ryuichi Tanaka. On trivialities of Stiefel-Whitney classes of vector bundles over iterated suspension spaces. Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 357-366. doi : 10.4310/HHA.2010.v12.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a18/

Cité par Sources :