Categorified symplectic geometry and the string Lie 2-algebra
Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 221-236.

Voir la notice de l'article provenant de la source International Press of Boston

Multisymplectic geometry is a generalization of symplectic geometry suitable for $n$-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate $(n+1)$-form. The case $n=2$ is relevant to string theory: we call this “2-plectic geometry.” Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, the observables associated to a 2-plectic manifold form a “Lie 2-algebra,” which is a categorified version of a Lie algebra. Any compact simple Lie group $G$ has a canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra this example yields. This Lie 2-algebra is infinite-dimensional, but we show here that the sub-Lie-2-algebra of left-invariant observables is finite-dimensional, and isomorphic to the already known “string Lie 2-algebra” associated to $G$. So, categorified symplectic geometry gives a geometric construction of the string Lie 2-algebra.
DOI : 10.4310/HHA.2010.v12.n1.a12
Classification : 53D05, 53Z05, 70S05, 81T30
Keywords: categorification, string group, multisymplectic geometry
@article{HHA_2010_12_1_a12,
     author = {John C. Baez and Christopher L. Rogers},
     title = {Categorified symplectic geometry and the string {Lie} 2-algebra},
     journal = {Homology, homotopy, and applications},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4310/HHA.2010.v12.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a12/}
}
TY  - JOUR
AU  - John C. Baez
AU  - Christopher L. Rogers
TI  - Categorified symplectic geometry and the string Lie 2-algebra
JO  - Homology, homotopy, and applications
PY  - 2010
SP  - 221
EP  - 236
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a12/
DO  - 10.4310/HHA.2010.v12.n1.a12
LA  - en
ID  - HHA_2010_12_1_a12
ER  - 
%0 Journal Article
%A John C. Baez
%A Christopher L. Rogers
%T Categorified symplectic geometry and the string Lie 2-algebra
%J Homology, homotopy, and applications
%D 2010
%P 221-236
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a12/
%R 10.4310/HHA.2010.v12.n1.a12
%G en
%F HHA_2010_12_1_a12
John C. Baez; Christopher L. Rogers. Categorified symplectic geometry and the string Lie 2-algebra. Homology, homotopy, and applications, Tome 12 (2010) no. 1, pp. 221-236. doi : 10.4310/HHA.2010.v12.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2010.v12.n1.a12/

Cité par Sources :