On the embedding dimension of 2-torsion lens spaces
Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 133-160.

Voir la notice de l'article provenant de la source International Press of Boston

Using the ku- and BP-theoretic versions of Astey’s cobordism obstruction for the existence of smooth Euclidean embeddings of stably almost complex manifolds, we prove that, for $e$ greater than or equal to $α(n)$, the $(2n + 1)$-dimensional $2^e$-torsion lens space cannot be embedded in Euclidean space of dimension $4n − 2 α(n) + 1$. (Here $α(n)$ denotes the number of ones in the dyadic expansion of a positive integer $n$.) A slightly restricted version of this fact holds for $e α(n)$.We also give an inductive construction of Euclidean embeddings for $2^e$-torsion lens spaces. Some of our best embeddings are within one dimension of being optimal.
DOI : 10.4310/HHA.2009.v11.n2.a7
Classification : 19L41, 55S45, 57R40
Keywords: Euclidean embeddings of lens spaces, connective complex K-theory, Brown-Peterson theory, Euler class, modified Postnikov towers
@article{HHA_2009_11_2_a7,
     author = {Jes\'us Gonz\'alez and Peter Landweber and Thomas Shimkus},
     title = {On the embedding dimension of 2-torsion lens spaces},
     journal = {Homology, homotopy, and applications},
     pages = {133--160},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n2.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a7/}
}
TY  - JOUR
AU  - Jesús González
AU  - Peter Landweber
AU  - Thomas Shimkus
TI  - On the embedding dimension of 2-torsion lens spaces
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 133
EP  - 160
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a7/
DO  - 10.4310/HHA.2009.v11.n2.a7
LA  - en
ID  - HHA_2009_11_2_a7
ER  - 
%0 Journal Article
%A Jesús González
%A Peter Landweber
%A Thomas Shimkus
%T On the embedding dimension of 2-torsion lens spaces
%J Homology, homotopy, and applications
%D 2009
%P 133-160
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a7/
%R 10.4310/HHA.2009.v11.n2.a7
%G en
%F HHA_2009_11_2_a7
Jesús González; Peter Landweber; Thomas Shimkus. On the embedding dimension of 2-torsion lens spaces. Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 133-160. doi : 10.4310/HHA.2009.v11.n2.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a7/

Cité par Sources :