The hunting of the Hopf ring
Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 75-132.

Voir la notice de l'article provenant de la source International Press of Boston

We provide a new algebraic description of the structure on the set of all unstable cohomology operations for a suitable generalised cohomology theory, $E*(—)$. Our description is as a graded and completed version of a Tall-Wraith monoid. The $E*$-cohomology of a space $X$ is a module for this Tall-Wraith monoid. We also show that the corresponding Hopf ring of unstable co-operations is a module for the Tall-Wraith monoid of unstable operations. Further examples are provided by considering operations from one theory to another.
DOI : 10.4310/HHA.2009.v11.n2.a6
Classification : 55S25, 16Wxx, 55N20
Keywords: unstable cohomology operations, Hopf ring
@article{HHA_2009_11_2_a6,
     author = {Andrew Stacey and Sarah Whitehouse},
     title = {The hunting of the {Hopf} ring},
     journal = {Homology, homotopy, and applications},
     pages = {75--132},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a6/}
}
TY  - JOUR
AU  - Andrew Stacey
AU  - Sarah Whitehouse
TI  - The hunting of the Hopf ring
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 75
EP  - 132
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a6/
DO  - 10.4310/HHA.2009.v11.n2.a6
LA  - en
ID  - HHA_2009_11_2_a6
ER  - 
%0 Journal Article
%A Andrew Stacey
%A Sarah Whitehouse
%T The hunting of the Hopf ring
%J Homology, homotopy, and applications
%D 2009
%P 75-132
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a6/
%R 10.4310/HHA.2009.v11.n2.a6
%G en
%F HHA_2009_11_2_a6
Andrew Stacey; Sarah Whitehouse. The hunting of the Hopf ring. Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 75-132. doi : 10.4310/HHA.2009.v11.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a6/

Cité par Sources :