Algebraic $K$-theory and cubical descent
Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 5-25.

Voir la notice de l'article provenant de la source International Press of Boston

In this note we apply the Guillén-Navarro descent theorem to define a descent variant of the algebraic $K$-theory of varieties over a field of characteristic zero, $\mathcal{K}D(X)$, which coincides with $\mathcal{K}(X)$ for smooth varieties and to prove that there is a natural weight filtration on the groups $KD-*(X)$. After a result of Haesemeyer, we deduce that this theory is equivalent to the homotopy algebraic $K$-theory introduced by Weibel.
DOI : 10.4310/HHA.2009.v11.n2.a2
Classification : 18G60, 19D55
Keywords: algebraic $K$-theory, descent, weight filtration
@article{HHA_2009_11_2_a2,
     author = {Pere Pascual and Lloren\c{c} Rubi\'o Pons},
     title = {Algebraic $K$-theory and cubical descent},
     journal = {Homology, homotopy, and applications},
     pages = {5--25},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a2/}
}
TY  - JOUR
AU  - Pere Pascual
AU  - Llorenç Rubió Pons
TI  - Algebraic $K$-theory and cubical descent
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 5
EP  - 25
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a2/
DO  - 10.4310/HHA.2009.v11.n2.a2
LA  - en
ID  - HHA_2009_11_2_a2
ER  - 
%0 Journal Article
%A Pere Pascual
%A Llorenç Rubió Pons
%T Algebraic $K$-theory and cubical descent
%J Homology, homotopy, and applications
%D 2009
%P 5-25
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a2/
%R 10.4310/HHA.2009.v11.n2.a2
%G en
%F HHA_2009_11_2_a2
Pere Pascual; Llorenç Rubió Pons. Algebraic $K$-theory and cubical descent. Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 5-25. doi : 10.4310/HHA.2009.v11.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a2/

Cité par Sources :