The congruence criterion for power operations in Morava $E$-theory
Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 327-379.

Voir la notice de l'article provenant de la source International Press of Boston

We prove a congruence criterion for the algebraic theory of power operations in Morava $E$-theory, analogous to Wilkerson’s congruence criterion for torsion free λ-rings. In addition, we provide a geometric description of this congruence criterion, in terms of sheaves on the moduli problem of deformations of formal groups and Frobenius isogenies.
DOI : 10.4310/HHA.2009.v11.n2.a16
Classification : 14L05, 55S12, 55S25
Keywords: power operation, Morava E-theory
@article{HHA_2009_11_2_a16,
     author = {Charles Rezk},
     title = {The congruence criterion for power operations in {Morava} $E$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {327--379},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a16/}
}
TY  - JOUR
AU  - Charles Rezk
TI  - The congruence criterion for power operations in Morava $E$-theory
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 327
EP  - 379
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a16/
DO  - 10.4310/HHA.2009.v11.n2.a16
LA  - en
ID  - HHA_2009_11_2_a16
ER  - 
%0 Journal Article
%A Charles Rezk
%T The congruence criterion for power operations in Morava $E$-theory
%J Homology, homotopy, and applications
%D 2009
%P 327-379
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a16/
%R 10.4310/HHA.2009.v11.n2.a16
%G en
%F HHA_2009_11_2_a16
Charles Rezk. The congruence criterion for power operations in Morava $E$-theory. Homology, homotopy, and applications, Tome 11 (2009) no. 2, pp. 327-379. doi : 10.4310/HHA.2009.v11.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n2.a16/

Cité par Sources :