Classifying rational $G$-spectra for finite $G$
Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 141-170.

Voir la notice de l'article provenant de la source International Press of Boston

We give a new proof that for a finite group $G$, the category of rational $G$-equivariant spectra is Quillen equivalent to the product of the model categories of chain complexes of modules over the rational group ring of the Weyl group of $H$ in $G$, as $H$ runs over the conjugacy classes of subgroups of $G$. Furthermore, the Quillen equivalences of our proof are all symmetric monoidal. Thus we can understand categories of algebras or modules over a ring spectrum in terms of the algebraic model.
DOI : 10.4310/HHA.2009.v11.n1.a7
Classification : 55N91, 55P42
Keywords: equivariant cohomology
@article{HHA_2009_11_1_a7,
     author = {David Barnes},
     title = {Classifying rational $G$-spectra for finite $G$},
     journal = {Homology, homotopy, and applications},
     pages = {141--170},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a7/}
}
TY  - JOUR
AU  - David Barnes
TI  - Classifying rational $G$-spectra for finite $G$
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 141
EP  - 170
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a7/
DO  - 10.4310/HHA.2009.v11.n1.a7
LA  - en
ID  - HHA_2009_11_1_a7
ER  - 
%0 Journal Article
%A David Barnes
%T Classifying rational $G$-spectra for finite $G$
%J Homology, homotopy, and applications
%D 2009
%P 141-170
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a7/
%R 10.4310/HHA.2009.v11.n1.a7
%G en
%F HHA_2009_11_1_a7
David Barnes. Classifying rational $G$-spectra for finite $G$. Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 141-170. doi : 10.4310/HHA.2009.v11.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a7/

Cité par Sources :