Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities
Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 81-114.

Voir la notice de l'article provenant de la source International Press of Boston

Let $A$ be a locally $m$-convex Fréchet algebra. We give a necessary and sufficient condition for a cyclic Fréchet $A$-module $X = A_{+} / I$ to be strictly flat, generalizing thereby a criterion of Helemskii and Sheinberg. To this end, we introduce a notion of “locally bounded approximate identity” (a locally b.a.i. for short), and we show that $X$ is strictly flat if and only if the ideal $I$ has a right locally b.a.i. Next we apply this result to amenable algebras and show that a locally $m$-convex Fréchet algebra $A$ is amenable if and only if $A$ is isomorphic to a reduced inverse limit of amenable Banach algebras. We also extend a number of characterizations of amenability obtained by Johnson and by Helemskii and Sheinberg to the setting of locally $m$-convex Fréchet algebras. As a corollary, we show that Connes and Haagerup’s theorem on amenable $C*-algebras$ and Sheinberg’s theorem on amenable uniform algebras hold in the Fréchet algebra case. We also show that a quasinormable locally $m$-convex Fréchet algebra has a locally b.a.i. if and only if it has a b.a.i. On the other hand, we give an example of a commutative, locally $m$-convex Fréchet-Montel algebra which has a locally b.a.i., but does not have a b.a.i.
DOI : 10.4310/HHA.2009.v11.n1.a5
Classification : 46H25, 46M10, 46M18, 16D40, 18G50, 46A45
Keywords: flat Fréchet module, cyclic Fréchet module, amenable Fréchet algebra, locally $m$-convex algebra, approximate identity, approximate diagonal, Köthe space, quasinormable Fréchet space
@article{HHA_2009_11_1_a5,
     author = {A.Yu. Pirkovskii},
     title = {Flat cyclic {Fr\'echet} modules, amenable {Fr\'echet} algebras, and approximate identities},
     journal = {Homology, homotopy, and applications},
     pages = {81--114},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a5/}
}
TY  - JOUR
AU  - A.Yu. Pirkovskii
TI  - Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 81
EP  - 114
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a5/
DO  - 10.4310/HHA.2009.v11.n1.a5
LA  - en
ID  - HHA_2009_11_1_a5
ER  - 
%0 Journal Article
%A A.Yu. Pirkovskii
%T Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities
%J Homology, homotopy, and applications
%D 2009
%P 81-114
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a5/
%R 10.4310/HHA.2009.v11.n1.a5
%G en
%F HHA_2009_11_1_a5
A.Yu. Pirkovskii. Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities. Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 81-114. doi : 10.4310/HHA.2009.v11.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a5/

Cité par Sources :