Homotopy nilpotency in localized $SU(n)$
Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 61-79.

Voir la notice de l'article provenant de la source International Press of Boston

We determine the homotopy nilpotency of $p$-localized $SU(n)$ when $p$ is a quasi-regular prime in the sense of M. Mimura and H. Toda, “Cohomology operations and homotopy of compact Lie groups I,” Topology 9 (1970), 317-336. As a consequence, we see that it is not a monotonic decreasing function in $p$.
DOI : 10.4310/HHA.2009.v11.n1.a4
Classification : 55P60, 55Q15
Keywords: homotopy nilpotency, localization
@article{HHA_2009_11_1_a4,
     author = {Daisuke Kishimoto},
     title = {Homotopy nilpotency in localized $SU(n)$},
     journal = {Homology, homotopy, and applications},
     pages = {61--79},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a4/}
}
TY  - JOUR
AU  - Daisuke Kishimoto
TI  - Homotopy nilpotency in localized $SU(n)$
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 61
EP  - 79
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a4/
DO  - 10.4310/HHA.2009.v11.n1.a4
LA  - en
ID  - HHA_2009_11_1_a4
ER  - 
%0 Journal Article
%A Daisuke Kishimoto
%T Homotopy nilpotency in localized $SU(n)$
%J Homology, homotopy, and applications
%D 2009
%P 61-79
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a4/
%R 10.4310/HHA.2009.v11.n1.a4
%G en
%F HHA_2009_11_1_a4
Daisuke Kishimoto. Homotopy nilpotency in localized $SU(n)$. Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 61-79. doi : 10.4310/HHA.2009.v11.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a4/

Cité par Sources :