On $H*(\mathcal{C}; k^×)$ for fusion systems
Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 203-218.

Voir la notice de l'article provenant de la source International Press of Boston

We give a cohomological criterion for the existence and uniqueness of solutions of the $2$-cocycle gluing problem in block theory. The existence of a solution for the $2$-cocycle gluing problem is further reduced to a property of fusion systems of certain finite groups associated with the fusion system of a block.
DOI : 10.4310/HHA.2009.v11.n1.a10
Classification : 16E40, 18G40, 20C20
Keywords: fusion system, block, 2-cocycle
@article{HHA_2009_11_1_a10,
     author = {Markus Linckelmann},
     title = {On $H*(\mathcal{C}; k^{\texttimes})$ for fusion systems},
     journal = {Homology, homotopy, and applications},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2009},
     doi = {10.4310/HHA.2009.v11.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a10/}
}
TY  - JOUR
AU  - Markus Linckelmann
TI  - On $H*(\mathcal{C}; k^×)$ for fusion systems
JO  - Homology, homotopy, and applications
PY  - 2009
SP  - 203
EP  - 218
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a10/
DO  - 10.4310/HHA.2009.v11.n1.a10
LA  - en
ID  - HHA_2009_11_1_a10
ER  - 
%0 Journal Article
%A Markus Linckelmann
%T On $H*(\mathcal{C}; k^×)$ for fusion systems
%J Homology, homotopy, and applications
%D 2009
%P 203-218
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a10/
%R 10.4310/HHA.2009.v11.n1.a10
%G en
%F HHA_2009_11_1_a10
Markus Linckelmann. On $H*(\mathcal{C}; k^×)$ for fusion systems. Homology, homotopy, and applications, Tome 11 (2009) no. 1, pp. 203-218. doi : 10.4310/HHA.2009.v11.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2009.v11.n1.a10/

Cité par Sources :