Toward higher chromatic analogs of elliptic cohomology II
Homology, homotopy, and applications, Tome 10 (2008) no. 3, pp. 335-368.

Voir la notice de l'article provenant de la source International Press of Boston

Let $p$ be a prime and $f$ a positive integer, greater than $1$ if $p=2$. We construct liftings of the Artin-Schreier curve $C(p,f)$ in characteristic $p$ defined by the equation $y^e=x-x^p$ (where $e=p^f-1$) to a curve $\tilde{C}(p,f)$ over a certain polynomial ring $R'$ in characteristic $0$ which shares the following property with $C(p,f)$. Over a certain quotient of $R'$, the formal completion of the Jacobian $J(\tilde{C}(p,f))$ has a $1$-dimensional formal summand of height $(p-1)f$. Along the way we show how Honda’s theory of commutative formal group laws can be extended to more general rings and prove a conjecture of his about the Fermat curve.
DOI : 10.4310/HHA.2008.v10.n3.a15
Classification : 55N34, 14H40, 14H50, 14L05, 55N22
Keywords: formal group law, elliptic cohomology, algebraic curve
@article{HHA_2008_10_3_a19,
     author = {Douglas C. Ravenel},
     title = {Toward higher chromatic analogs of elliptic cohomology {II}},
     journal = {Homology, homotopy, and applications},
     pages = {335--368},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n3.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a15/}
}
TY  - JOUR
AU  - Douglas C. Ravenel
TI  - Toward higher chromatic analogs of elliptic cohomology II
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 335
EP  - 368
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a15/
DO  - 10.4310/HHA.2008.v10.n3.a15
LA  - en
ID  - HHA_2008_10_3_a19
ER  - 
%0 Journal Article
%A Douglas C. Ravenel
%T Toward higher chromatic analogs of elliptic cohomology II
%J Homology, homotopy, and applications
%D 2008
%P 335-368
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a15/
%R 10.4310/HHA.2008.v10.n3.a15
%G en
%F HHA_2008_10_3_a19
Douglas C. Ravenel. Toward higher chromatic analogs of elliptic cohomology II. Homology, homotopy, and applications, Tome 10 (2008) no. 3, pp. 335-368. doi : 10.4310/HHA.2008.v10.n3.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a15/

Cité par Sources :