An algebraic generalization of image $J$
Homology, homotopy, and applications, Tome 10 (2008) no. 3, pp. 321-333.

Voir la notice de l'article provenant de la source International Press of Boston

As is well known, the image of the $J$-homomorphism in the stable homotopy groups of spheres is described in terms of the first line of the Adams-Novikov $E_2$-term. In this paper we consider an algebraic analogue of the image of $J$ using the spectrum $T(m)_(j)$ defined by Ravenel and determine the Adams-Novikov first line for small values of $j$.
DOI : 10.4310/HHA.2008.v10.n3.a14
Classification : 55Q45
Keywords: stable homotopy of spheres, Adams-Novikov spectral sequence
@article{HHA_2008_10_3_a18,
     author = {Hirofumi Nakai},
     title = {An algebraic generalization of image $J$},
     journal = {Homology, homotopy, and applications},
     pages = {321--333},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n3.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a14/}
}
TY  - JOUR
AU  - Hirofumi Nakai
TI  - An algebraic generalization of image $J$
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 321
EP  - 333
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a14/
DO  - 10.4310/HHA.2008.v10.n3.a14
LA  - en
ID  - HHA_2008_10_3_a18
ER  - 
%0 Journal Article
%A Hirofumi Nakai
%T An algebraic generalization of image $J$
%J Homology, homotopy, and applications
%D 2008
%P 321-333
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a14/
%R 10.4310/HHA.2008.v10.n3.a14
%G en
%F HHA_2008_10_3_a18
Hirofumi Nakai. An algebraic generalization of image $J$. Homology, homotopy, and applications, Tome 10 (2008) no. 3, pp. 321-333. doi : 10.4310/HHA.2008.v10.n3.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n3.a14/

Cité par Sources :