Periodic cohomology
Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 135-137.

Voir la notice de l'article provenant de la source International Press of Boston

We remark that a very short proof of an elementary result concerning cohomological periods is implicit in the existing literature. As a corollary we show that given a finitely generated stably free resolution of the integers over a finite group, two of its modules are free.
DOI : 10.4310/HHA.2008.v10.n2.a6
Classification : 16E05
Keywords: projective resolution, periodic homology
@article{HHA_2008_10_2_a6,
     author = {W.H. Mannan},
     title = {Periodic cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {135--137},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a6/}
}
TY  - JOUR
AU  - W.H. Mannan
TI  - Periodic cohomology
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 135
EP  - 137
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a6/
DO  - 10.4310/HHA.2008.v10.n2.a6
LA  - en
ID  - HHA_2008_10_2_a6
ER  - 
%0 Journal Article
%A W.H. Mannan
%T Periodic cohomology
%J Homology, homotopy, and applications
%D 2008
%P 135-137
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a6/
%R 10.4310/HHA.2008.v10.n2.a6
%G en
%F HHA_2008_10_2_a6
W.H. Mannan. Periodic cohomology. Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 135-137. doi : 10.4310/HHA.2008.v10.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a6/

Cité par Sources :