Quotients of the multiplihedron as categorified associahedra
Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 227-256.

Voir la notice de l'article provenant de la source International Press of Boston

We describe a new sequence of polytopes which characterize $A_{\infty}$-maps from a topological monoid to an $A_{\infty}$-space. Therefore each of these polytopes is a quotient of the corresponding multiplihedron. Our sequence of polytopes is demonstrated not to be combinatorially equivalent to the associahedra, as was previously assumed in both topological and categorical literature. They are given the new collective name composihedra. We point out how these polytopes are used to parametrize compositions in the formulation of the theories of enriched bicategories and pseudomonoids in a monoidal bicategory. We also present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the $n^{th}$ polytope in the sequence of composihedra, that is, the $n^{th}$ composihedron $CK(n)$.
DOI : 10.4310/HHA.2008.v10.n2.a12
Classification : 18D20, 18D50, 52B12, 55P43
Keywords: enriched categories, $n$-categories, monoidal categories, polytopes
@article{HHA_2008_10_2_a12,
     author = {Stefan Forcey},
     title = {Quotients of the multiplihedron as categorified associahedra},
     journal = {Homology, homotopy, and applications},
     pages = {227--256},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a12/}
}
TY  - JOUR
AU  - Stefan Forcey
TI  - Quotients of the multiplihedron as categorified associahedra
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 227
EP  - 256
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a12/
DO  - 10.4310/HHA.2008.v10.n2.a12
LA  - en
ID  - HHA_2008_10_2_a12
ER  - 
%0 Journal Article
%A Stefan Forcey
%T Quotients of the multiplihedron as categorified associahedra
%J Homology, homotopy, and applications
%D 2008
%P 227-256
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a12/
%R 10.4310/HHA.2008.v10.n2.a12
%G en
%F HHA_2008_10_2_a12
Stefan Forcey. Quotients of the multiplihedron as categorified associahedra. Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 227-256. doi : 10.4310/HHA.2008.v10.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a12/

Cité par Sources :