A universality theorem for Voevodsky’s algebraic cobordism spectrum
Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 212-226.

Voir la notice de l'article provenant de la source International Press of Boston

An algebraic version of a theorem of Quillen is proved. More precisely, for a regular Noetherian scheme $S$ of finite Krull dimension, we consider the motivic stable homotopy category $\mathrm{SH}(S)$ of $\mathbf{P}^1$-spectra, equipped with the symmetric monoidal structure described in [7]. The algebraic cobordism $\mathbf{P}^1$-spectrum $\mathrm{MGL}$ is considered as a commutative monoid equipped with a canonical orientation $th^{\mathrm{MGL}} \in \mathrm{MGL}^{2,1}(\mathrm{Th}(\mathcal O(-1)))$. For a commutative monoid $E$ in the category $\mathrm{SH}(S)$, it is proved that the assignment $\varphi \mapsto \varphi(th^{\mathrm{MGL}})$ identifies the set of monoid homomorphisms $\varphi\colon \mathrm{MGL} \to E$ in the motivic stable homotopy category $\mathrm{SH}(S)$ with the set of all orientations of $E$. This result generalizes a result of G. Vezzosi in [12].
DOI : 10.4310/HHA.2008.v10.n2.a11
Classification : 14F05, 55N22, 55P43
Keywords: algebraic cobordism, motivic ring spectra
@article{HHA_2008_10_2_a11,
     author = {Ivan Panin and Konstantin Pimenov and Oliver R\"ondigs},
     title = {A universality theorem for {Voevodsky{\textquoteright}s} algebraic cobordism spectrum},
     journal = {Homology, homotopy, and applications},
     pages = {212--226},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a11/}
}
TY  - JOUR
AU  - Ivan Panin
AU  - Konstantin Pimenov
AU  - Oliver Röndigs
TI  - A universality theorem for Voevodsky’s algebraic cobordism spectrum
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 212
EP  - 226
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a11/
DO  - 10.4310/HHA.2008.v10.n2.a11
LA  - en
ID  - HHA_2008_10_2_a11
ER  - 
%0 Journal Article
%A Ivan Panin
%A Konstantin Pimenov
%A Oliver Röndigs
%T A universality theorem for Voevodsky’s algebraic cobordism spectrum
%J Homology, homotopy, and applications
%D 2008
%P 212-226
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a11/
%R 10.4310/HHA.2008.v10.n2.a11
%G en
%F HHA_2008_10_2_a11
Ivan Panin; Konstantin Pimenov; Oliver Röndigs. A universality theorem for Voevodsky’s algebraic cobordism spectrum. Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 212-226. doi : 10.4310/HHA.2008.v10.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a11/

Cité par Sources :