Realization theorems for end obstructions
Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 1-12.

Voir la notice de l'article provenant de la source International Press of Boston

A stratified space is a filtered space with manifolds as its strata. Connolly and Vajiac proved an end theorem for stratified spaces, generalizing earlier results of Siebenmann and Quinn. Their main result states that there is a single $K$-theoretical obstruction to completing a tame-ended stratified space. A necessary condition to completeness is to find an exhaustion of the stratified space, i.e. an increasing sequence of stratified spaces with bicollared boundaries, whose union is the original space. In this paper we give an example of a stratified space that is not exhaustible. We also prove that the Connolly-Vajiac end obstructions can be realized.
DOI : 10.4310/HHA.2008.v10.n2.a1
Classification : 57N40, 57N80, 57Q10, 57Q20, 57Q40
Keywords: stratified spaces, homology, homotopy
@article{HHA_2008_10_2_a1,
     author = {Bogdan Vajiac},
     title = {Realization theorems for end obstructions},
     journal = {Homology, homotopy, and applications},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n2.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a1/}
}
TY  - JOUR
AU  - Bogdan Vajiac
TI  - Realization theorems for end obstructions
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 1
EP  - 12
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a1/
DO  - 10.4310/HHA.2008.v10.n2.a1
LA  - en
ID  - HHA_2008_10_2_a1
ER  - 
%0 Journal Article
%A Bogdan Vajiac
%T Realization theorems for end obstructions
%J Homology, homotopy, and applications
%D 2008
%P 1-12
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a1/
%R 10.4310/HHA.2008.v10.n2.a1
%G en
%F HHA_2008_10_2_a1
Bogdan Vajiac. Realization theorems for end obstructions. Homology, homotopy, and applications, Tome 10 (2008) no. 2, pp. 1-12. doi : 10.4310/HHA.2008.v10.n2.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n2.a1/

Cité par Sources :