Inertia and delocalized twisted cohomology
Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 129-180.

Voir la notice de l'article provenant de la source International Press of Boston

Orbispaces are the analog of orbifolds, where the category of manifolds is replaced by topological spaces. We construct the loop orbispace $LX$ of an orbispace $X$ in the language of stacks in topological spaces. Furthermore, to a twist given by a $U(1)$-banded gerbe $G\to X$ we associate a $U(1)^\delta$-principal bundle $\tilde G^\delta\to LX$. We use sheaf theory on topological stacks in order to define the delocalized twisted cohomology by $$H^*_{{\rm deloc}}(X,G):=H^*(G_L,f^*_L\mathcal{L}),$$ where $f_L\colon G_L\to LX$ is the pull-back of the gerbe $G\to X$ via the natural map $LX\to X$, and $\mathcal{L}\in {\tt Sh}_{\tt Ab}\mathbf{LX}$ is the sheaf of sections of the $\mathbb{C}^\delta$-bundle associated to $\tilde G^\delta\to LX$. The same constructions can be applied in the case of orbifolds, and we show that the sheaf theoretic delocalized twisted cohomology is isomorphic to the twisted de Rham cohomology, where the isomorphism depends on the choice of a geometric structure on the gerbe $G\to X$.
DOI : 10.4310/HHA.2008.v10.n1.a6
Classification : 55-xx
Keywords: orbispace, delocalized twisted cohomology, inertia stack
@article{HHA_2008_10_1_a6,
     author = {Ulrich Bunke and Thomas Schick and Markus Spitzweck},
     title = {Inertia and delocalized twisted cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {129--180},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a6/}
}
TY  - JOUR
AU  - Ulrich Bunke
AU  - Thomas Schick
AU  - Markus Spitzweck
TI  - Inertia and delocalized twisted cohomology
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 129
EP  - 180
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a6/
DO  - 10.4310/HHA.2008.v10.n1.a6
LA  - en
ID  - HHA_2008_10_1_a6
ER  - 
%0 Journal Article
%A Ulrich Bunke
%A Thomas Schick
%A Markus Spitzweck
%T Inertia and delocalized twisted cohomology
%J Homology, homotopy, and applications
%D 2008
%P 129-180
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a6/
%R 10.4310/HHA.2008.v10.n1.a6
%G en
%F HHA_2008_10_1_a6
Ulrich Bunke; Thomas Schick; Markus Spitzweck. Inertia and delocalized twisted cohomology. Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 129-180. doi : 10.4310/HHA.2008.v10.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a6/

Cité par Sources :