Excision for $K$-theory of connective ring spectra
Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 29-39.

Voir la notice de l'article provenant de la source International Press of Boston

We extend Geisser and Hesselholt’s result on “bi-relative $K$-theory” from discrete rings to connective ring spectra. That is, if $A$ is a homotopy cartesian $n$-cube of ring spectra (satisfying connectivity hypotheses), then the $(n + 1)$-cube induced by the cyclotomic trace $\mathcal{K(A) \to TC(A)}$ is homotopy cartesian after profinite completion. In other words, the fiber of the profinitely completed cyclotomic trace satisfies excision.
DOI : 10.4310/HHA.2008.v10.n1.a2
Classification : 18G30, 19C40, 19D55
Keywords: algebraic $K$-theory, excision, ring spectrum
@article{HHA_2008_10_1_a2,
     author = {Bj{\o}rn Ian Dundas and Harald {\O}yen Kittang},
     title = {Excision for $K$-theory of connective ring spectra},
     journal = {Homology, homotopy, and applications},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a2/}
}
TY  - JOUR
AU  - Bjørn Ian Dundas
AU  - Harald Øyen Kittang
TI  - Excision for $K$-theory of connective ring spectra
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 29
EP  - 39
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a2/
DO  - 10.4310/HHA.2008.v10.n1.a2
LA  - en
ID  - HHA_2008_10_1_a2
ER  - 
%0 Journal Article
%A Bjørn Ian Dundas
%A Harald Øyen Kittang
%T Excision for $K$-theory of connective ring spectra
%J Homology, homotopy, and applications
%D 2008
%P 29-39
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a2/
%R 10.4310/HHA.2008.v10.n1.a2
%G en
%F HHA_2008_10_1_a2
Bjørn Ian Dundas; Harald Øyen Kittang. Excision for $K$-theory of connective ring spectra. Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 29-39. doi : 10.4310/HHA.2008.v10.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a2/

Cité par Sources :