Splittings in the Burnside ring and in $SF_G$
Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 1-27.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a finite $p$-group, $p \neq 2$. We construct a map from the space $J_G$, defined as the fiber of $\psi^k-1: B_G O \to B_G Spin$, to the space $(SF_G)_p$, defined as the 1-component of the zeroth space of the equivariant $p$-complete sphere spectrum. Our map produces the same splitting of the $G$-connected cover of $(SF_G)_p$ as we have described in previous work, but it also induces a natural splitting of the $p$-completions of the component groups of fixed point subspaces.
DOI : 10.4310/HHA.2008.v10.n1.a1
Classification : 19L20, 19L47, 55R91
Keywords: $J$-homomorphism, Burnside ring, sphere spectru
@article{HHA_2008_10_1_a1,
     author = {Christopher P. French},
     title = {Splittings in the {Burnside} ring and in $SF_G$},
     journal = {Homology, homotopy, and applications},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2008},
     doi = {10.4310/HHA.2008.v10.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a1/}
}
TY  - JOUR
AU  - Christopher P. French
TI  - Splittings in the Burnside ring and in $SF_G$
JO  - Homology, homotopy, and applications
PY  - 2008
SP  - 1
EP  - 27
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a1/
DO  - 10.4310/HHA.2008.v10.n1.a1
LA  - en
ID  - HHA_2008_10_1_a1
ER  - 
%0 Journal Article
%A Christopher P. French
%T Splittings in the Burnside ring and in $SF_G$
%J Homology, homotopy, and applications
%D 2008
%P 1-27
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a1/
%R 10.4310/HHA.2008.v10.n1.a1
%G en
%F HHA_2008_10_1_a1
Christopher P. French. Splittings in the Burnside ring and in $SF_G$. Homology, homotopy, and applications, Tome 10 (2008) no. 1, pp. 1-27. doi : 10.4310/HHA.2008.v10.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2008.v10.n1.a1/

Cité par Sources :